3.1.56 \(\int x^2 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x)) \, dx\) [56]

Optimal. Leaf size=189 \[ \frac {b x^2 \sqrt {d-c^2 d x^2}}{16 c \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{8 c^2}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))+\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{16 b c^3 \sqrt {1-c^2 x^2}} \]

[Out]

-1/8*x*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)/c^2+1/4*x^3*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))+1/16*b*x^2*(-
c^2*d*x^2+d)^(1/2)/c/(-c^2*x^2+1)^(1/2)-1/16*b*c*x^4*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+1/16*(a+b*arcsin(
c*x))^2*(-c^2*d*x^2+d)^(1/2)/b/c^3/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {4783, 4795, 4737, 30} \begin {gather*} -\frac {x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{8 c^2}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))+\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{16 b c^3 \sqrt {1-c^2 x^2}}+\frac {b x^2 \sqrt {d-c^2 d x^2}}{16 c \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]

[Out]

(b*x^2*Sqrt[d - c^2*d*x^2])/(16*c*Sqrt[1 - c^2*x^2]) - (b*c*x^4*Sqrt[d - c^2*d*x^2])/(16*Sqrt[1 - c^2*x^2]) -
(x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/(8*c^2) + (x^3*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/4 + (Sqrt[
d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/(16*b*c^3*Sqrt[1 - c^2*x^2])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4783

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f
*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSin[c*x])^n/(f*(m + 2))), x] + (Dist[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/S
qrt[1 - c^2*x^2]], Int[(f*x)^m*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x] - Dist[b*c*(n/(f*(m + 2)))*Si
mp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b,
c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])

Rule 4795

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + Dist[b*f*(n/(c*(m + 2*p + 1)))*S
imp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x],
 x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rubi steps

\begin {align*} \int x^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx &=\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {\sqrt {d-c^2 d x^2} \int \frac {x^2 \left (a+b \sin ^{-1}(c x)\right )}{\sqrt {1-c^2 x^2}} \, dx}{4 \sqrt {1-c^2 x^2}}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int x^3 \, dx}{4 \sqrt {1-c^2 x^2}}\\ &=-\frac {b c x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c^2}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {\sqrt {d-c^2 d x^2} \int \frac {a+b \sin ^{-1}(c x)}{\sqrt {1-c^2 x^2}} \, dx}{8 c^2 \sqrt {1-c^2 x^2}}+\frac {\left (b \sqrt {d-c^2 d x^2}\right ) \int x \, dx}{8 c \sqrt {1-c^2 x^2}}\\ &=\frac {b x^2 \sqrt {d-c^2 d x^2}}{16 c \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c^2}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{16 b c^3 \sqrt {1-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 140, normalized size = 0.74 \begin {gather*} \frac {\sqrt {d-c^2 d x^2} \left (a^2+b^2 c^2 x^2 \left (1-c^2 x^2\right )+2 a b c x \sqrt {1-c^2 x^2} \left (-1+2 c^2 x^2\right )+2 b \left (a+b c x \sqrt {1-c^2 x^2} \left (-1+2 c^2 x^2\right )\right ) \text {ArcSin}(c x)+b^2 \text {ArcSin}(c x)^2\right )}{16 b c^3 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]

[Out]

(Sqrt[d - c^2*d*x^2]*(a^2 + b^2*c^2*x^2*(1 - c^2*x^2) + 2*a*b*c*x*Sqrt[1 - c^2*x^2]*(-1 + 2*c^2*x^2) + 2*b*(a
+ b*c*x*Sqrt[1 - c^2*x^2]*(-1 + 2*c^2*x^2))*ArcSin[c*x] + b^2*ArcSin[c*x]^2))/(16*b*c^3*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.24, size = 367, normalized size = 1.94

method result size
default \(-\frac {a x \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{4 c^{2} d}+\frac {a x \sqrt {-c^{2} d \,x^{2}+d}}{8 c^{2}}+\frac {a d \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{8 c^{2} \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2}}{16 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-8 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}+8 c^{5} x^{5}+8 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}-12 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}+4 c x \right ) \left (i+4 \arcsin \left (c x \right )\right )}{256 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (8 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}+8 c^{5} x^{5}-8 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}-12 c^{3} x^{3}+i \sqrt {-c^{2} x^{2}+1}+4 c x \right ) \left (-i+4 \arcsin \left (c x \right )\right )}{256 c^{3} \left (c^{2} x^{2}-1\right )}\right )\) \(367\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x,method=_RETURNVERBOSE)

[Out]

-1/4*a*x*(-c^2*d*x^2+d)^(3/2)/c^2/d+1/8*a/c^2*x*(-c^2*d*x^2+d)^(1/2)+1/8*a/c^2*d/(c^2*d)^(1/2)*arctan((c^2*d)^
(1/2)*x/(-c^2*d*x^2+d)^(1/2))+b*(-1/16*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^3/(c^2*x^2-1)*arcsin(c*x)^2
+1/256*(-d*(c^2*x^2-1))^(1/2)*(-8*I*(-c^2*x^2+1)^(1/2)*x^4*c^4+8*c^5*x^5+8*I*(-c^2*x^2+1)^(1/2)*x^2*c^2-12*c^3
*x^3-I*(-c^2*x^2+1)^(1/2)+4*c*x)*(I+4*arcsin(c*x))/c^3/(c^2*x^2-1)+1/256*(-d*(c^2*x^2-1))^(1/2)*(8*I*(-c^2*x^2
+1)^(1/2)*x^4*c^4+8*c^5*x^5-8*I*(-c^2*x^2+1)^(1/2)*x^2*c^2-12*c^3*x^3+I*(-c^2*x^2+1)^(1/2)+4*c*x)*(-I+4*arcsin
(c*x))/c^3/(c^2*x^2-1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

b*sqrt(d)*integrate(sqrt(c*x + 1)*sqrt(-c*x + 1)*x^2*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)), x) + 1/8*a*(s
qrt(-c^2*d*x^2 + d)*x/c^2 - 2*(-c^2*d*x^2 + d)^(3/2)*x/(c^2*d) + sqrt(d)*arcsin(c*x)/c^3)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b*x^2*arcsin(c*x) + a*x^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(-c**2*d*x**2+d)**(1/2)*(a+b*asin(c*x)),x)

[Out]

Integral(x**2*sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*asin(c*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

integrate(sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a)*x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^2\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,\sqrt {d-c^2\,d\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2),x)

[Out]

int(x^2*(a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________